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Train the agreement
model g using the
labeled nodes in L.

L U

Train the classifica�on model
f using the nodes in L and
the predic�ons of g on edges
between L-L nodes, L-U
nodes, and U-U nodes.

L U L U

Extend L using the most
confident predic�ons of f
on unlabeled nodes from U.

21 3

Repeat un�l all nodes have been labeled.

Noisy edges

Unlabeled nodes

Limited Supervision
Only a small number of nodes are labeled.

1

General
Can be applied on top of
any classifica�on model to
improve its performance.

1
Outperforms previous
methods on several
established datasets.

State-of-the-Art2
Does not incur any
addi�onal performance
cost at inference.

Efficient3 4
Up to 18% accuracy boost
even when only 5% of the
edges are "correct".

Robust 5
Even works without a graph,
being applicable to broader
SSL se�ngs.

Extends Beyond Graphs

PROPERTIES

Add
s the

most confident predic�onsto the tra
ining data

Provides regulariza�on
for

the classifica�on mode
l

Loss Func�on:

GAM regulariza�on terms

f

Probability distribu�on
over node labels

Classifica�on Model

Make neighbor
predic�ons agree

based on the
output of g

Co-Training
Loop

Loss Func�on:

g

Probability that two
connected nodes have

the same label

EncoderEncoder

Aggregator

Predictor

Agreement probability

Agreement Model

The agreement model is what makes our
approach robust to noisy edges and differen�ates
it from other exis�ng label propaga�on methods!

Labeled nodes

Some edges may violate our key assump�on.
Noisy Edges2

Prac�cal problems o�en involve massive graphs.
Scale3

Connected nodes likely belong
to the same class!

Our goal is to learn a func�on that
classifies these samples.

• Document Classifica�on

• Image Classifica�on

• Intent Classifica�on
(e.g., for Smart Reply)

• User Classifica�on
(e.g., in Social Networks)

Many node classifica�on methods
rely on the following key assump�on:

Natural Constructed

Consider the task of classifying a set of
samples based on their features.

Wikipedia hyperlinks

Publica�on cita�ons

Social network
rela�onships

Embedding similarity
between documents,
images, etc.

Structural similarity
(e.g., dependency
parse similarity)

In some cases, we also have a graph
connec�ng the samples.

However, in prac�ce, graphs are noisy!

Problem Approach Experiments

ASSUMPTION

APPLICATIONS WHERE DO GRAPHS COME FROM?

CHALLENGES TRAINING ALGORITHM
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Graph Agreement Models for Semi-Supervised Learning

We first evaluate on benchmark graph node classifica�on datasets,
comparing to mul�ple baseline methods:

GAM = our method when a graph is provided
GAM* = our method when a graph is not provided

GAM can also be applied in se�ngs where no graph is provided, by
assuming a fully-connected graph. This is because it can handle noisy
edges. We evaluate on two popular semi-supervised learning datasets.

To test how well GAM can handle
noisy edges, we performed a
robustness analysis by ar�ficially
introducing wrong edges to the
Citeseer dataset.

WHAT IF THE GRAPH IS NOISY?

WHAT IF THERE IS NO GRAPH?

Contact: ostretcu@cs.cmu.edu
Code: https://github.com/tensorflow/neural-structured-learning


