

Otilia Stretcu Carnegie Mellon University

Problem

Consider the task of classifying a set of samples based on their features.

In some cases, we also have a graph connecting the samples.

Our goal is to learn a function that classifies these samples.

APPLICATIONS

- Document Classification
- Image Classification
- Intent Classification (e.g., for Smart Reply)
- User Classification (e.g., in Social Networks)

ASSUMPTION

Many node classification methods rely on the following key assumption:

> Connected nodes likely belong to the same class!

However, in practice, graphs are noisy!

CHALLENGES

beled nodes Jnlabeled nodes

Limited Supervision

Only a small number of nodes are labeled.

Noisy Edges

Some edges may violate our key assumption.

3 <u>Scale</u>

Practical problems often involve massive graphs.

Natural

WHERE DO GRAPHS COME FROM?

Wikipedia hyperlinks Publication citations

Social network relationships

Constructed

Embedding similarity between documents, images, etc.

Structural similarity (e.g., dependency parse similarity)

Graph Agreement Models for Semi-Supervised Learning

Krishnamurthy Viswanathan

Google Research

Dana Movshovitz-Attias

Google Research

Approach

PROPERTIES

Emmanouil Antonios Platanios

Carnegie Mellon University

Andrew Tomkins Google Research

Repeat until all nodes have been labeled.

Experiments

We first evaluate on benchmark graph node classification datasets, comparing to multiple baseline methods:

WHAT IF THERE IS NO GRAPH?

GAM can also be applied in settings where no graph is provided, by assuming a fully-connected graph. This is because it can handle noisy edges. We evaluate on two popular semi-supervised learning datasets.

WHAT IF THE GRAPH IS NOISY?

To test how well GAM can handle noisy edges, we performed a robustness analysis by artificially introducing wrong edges to the Citeseer dataset.

