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Abstract

Automatic discovery of foreground objects in video sequences is an important prob-
lem in computer vision with applications to object tracking, video segmentation and clas-
sification. We propose an efficient method for the discovery of object bounding boxes
and the corresponding soft-segmentation masks across multiple video frames. We offer a
graph matching formulation for bounding box selection and refinement using second and
higher order terms. Our objective function takes into consideration local, frame-based
information, as well as spatiotemporal and appearance consistency over multiple frames.
First, we find an initial pool of candidate boxes using a novel and fast foreground esti-
mation method in video, based on Principal Component Analysis. Then, we match the
boxes across multiple frames using pairwise geometric and appearance terms. Finally,
we refine their location and soft-segmentation using higher order potentials that estab-
lish appearance regularity over multiple frames. We test our method on the large scale
YouTube-Objects dataset and obtain state-of-the-art results on several object classes.

1 Introduction
The unconstrained discovery of objects in video sequences is an open problem in computer
vision, with potential impact on many different tasks, such as object tracking, weakly su-
pervised learning of category models, robotic systems, video mining and classification. In
this paper we focus on the problem of co-localization, which is that of finding object bound-
ing boxes automatically. We also propose an efficient method for rapidly estimating object
soft-segmentation masks, for better localization and shape estimation.

Usually, video sequences contain objects that display relatively stable geometric and
appearance patterns over time. Their change in shape and appearance is often smooth and
coherent between frames that are not very far away from each other. The mild transition
between nearby frames should be exploited for efficient discovery of objects. There are
several assumptions that could be made in practice, with minimal loss of information: single
objects stand out against the background. They tend to have their own unique distribution
of colors and texture. Their shape obeys certain grouping properties, with a smooth, strong
boundary response along its edges. Foreground objects are also more difficult to model than
their backgrounds, as their movements and appearance are more complex. They are likely to
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occupy a relatively small region of the scene and are often close to the image center. These
observations constitute the basis of our approach (Sec. 2).

The task of object discovery in video is strongly related to co-segmentation [12, 13, 15,
16, 27, 28, 31] and weakly supervised localization [9, 22, 29]. The task has been tackled
for more than a decade in computer vision, with initial works mainly based on local feature
matching and detection of their co-occurring patterns [18, 20, 24, 30]. Our approach is also
based on matching, and has at its core an integer quadratic formulation that is related to the
graph matching and MAP inference literature [6, 19]. Note that graph matching has been
used, under different forms, in related problems for weakly supervised learning and discov-
ery, such as [21]. Our method is related to the works mentioned and differs in important
ways: it rapidly discovers and establishes bounding box matches across multiple frames.
It also encourages spatiotemporal and appearance uniformity in order to improve box loca-
tions and produce high quality soft-segmentation masks. This is also different from recent
works [14, 26] that discover object tubes through only through links between consecutive
frames, without refining their location. They are more vulnerable to temporary occlusions,
strong blur and other appearance or geometric noises.

Here we introduce an efficient method for the discovery of objects in video, composed of
three main stages: 1) find potential bounding boxes; 2) match them across multiple frames; 3)
obtain a soft segmentation mask for each frame and refine the boxes’ locations by iteratively
shifting their centers towards regions of maximum density of foreground pixels. We make
the following main contributions:

1. A novel formulation with efficient discrete and continuous optimization for joint au-
tomatic selection and refinement of object bounding boxes in video. Our approach en-
courages appearance, geometric and spatiotemporal consistency over multiple frames,
with a formulation that considers relations between neighboring as well as farther
away frames. This brings robustness against the common difficulties of complete or
partial occlusion, drifting and missing data.

2. A fast method for estimating foreground and occlusion regions based on Principal
Component Analysis of the video content. Different from classical background sub-
traction approaches, our novel method estimates a linear subspace model of the video
content and manages to handle cases of slowly moving or changing backgrounds.

2 Method Overview
Our goal is to automatically discover the main foreground object that appears in a video
sequence. We aim to estimate both its bounding box and its soft-foreground mask. We for-
mulate bounding box selection and location refinement as a discrete-continuous optimiza-
tion task. While solving the problem, we also generate soft-segmentation object masks. Our
approach is related to integer programming techniques from graph matching and MAP in-
ference [19] in graphical models, as well as co-segmentation methods in video [28]. The
algorithm consists of three main phases, as described next. First, we rapidly generate initial
foreground-background segmentations and form a pool of potential object bounding boxes.
Next, we match the boxes from frames that are nearby or farther away in time, in order to
encourage and preserve appearance and spatiotemporal consistency. Finally, we refine both
the bounding boxes locations and the object co-segmentations over the sequence. All stages
aggregate information from multiple frames in the video:
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Figure 1: The structure of our box-matching formulation: we allow links between neigh-
boring frames (e.g. i and j), as well as farther away ones, in order to better preserve the
appearance and shape consistency between the matched boxes over time (e.g. boxes a and
b). This results into a quadratic assignment problem that can be optimized efficiently.

1) Initial segmentation and generation of candidate bounding boxes: we rapidly
estimate the foreground object segmentation using our novel method, termed VideoPCA
(Section 4.1), based on Principal Component Analysis (PCA) of the entire video content.
It works in conjunction with a simple pixel-wise foreground/background inference routine
using color distributions, termed SoftSeg (Sec. 4.2). VideoPCA is able to return in realtime
(50−100 fps in Matlab on a 2.2GHz Laptop PC) regions that are likely to belong to objects,
foreground or the occluding regions caused by their movements. The procedure differs from
classical background subtraction approaches [1, 7] in that it is able to handle many cases
of moving or changing backgrounds. While the regions detected are not always correct,
the output of VideoPCA is very effective when fed into the recent method for generating
bounding box proposals based on image contours [33] (termed Edge Boxes). VideoPCA
object soft-segmentations are also used to filter out boxes with a relatively few foreground
pixels inside, based on a very permissive threshold.

2) Efficiently matching and selecting boxes over multiple frames: we formulate the
matching and selection of bounding boxes as a quadratic assignment problem (QAP) with
pairwise constraints (Fig. 1), directly related to recent formulations of graph matching and
MAP inference with Integer Quadratic Programming (IQP) [4, 6, 19]. We use both unary
properties that measure the quality of the candidate boxes and are computed per frame, and
pairwise properties that encourage spatiotemporal and appearance consistency over multiple
connected frames. We look at how the individual boxes separate themselves from the back-
ground in terms of velocity and appearance and how well they match each other in terms of
geometry (size and location) and appearance. We allow pairwise constraints (links) between
boxes that are several frames apart. Each frame is connected to its k forward and k backward
neighbors (in our case k = 10). We consider only every 5-th frame in a sequence, thus we
connect boxes that are up to 50 frames apart.

3) Localization and segmentation refinement: after matching and selecting object
bounding boxes, we re-estimate, for each given frame, a foreground-segmentation mask us-
ing color information from the matched boxes and their surrounding background (Sec. 4.2).
Once the soft-segmentation is re-estimated we apply the Mean-Shift algorithm [5] in order
to move the current matched bounding boxes towards the location with highest density of
foreground pixels. After convergence, we again estimate the segmentation using the new
box positions. Our mathematical formulation and detailed algorithm follow next.
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3 Mathematical Formulation
Given a video shot V as a sequence of temporally ordered frames V = {I1, I2, ..., In}, the goal
is to discover a potential object of interest and output its bounding box and soft-segmentation
mask. For each frame Ii we have a pool of ni candidate bounding boxes Bia’s, obtained
automatically. For each box a we store its xy location in image i in θia. Let xia be an indicator
variable corresponding to bounding box Bia (- the a-th bounding box of frame i), such that xia
is 1 if the bounding box Bia is selected, and 0 otherwise. The indicator variables are arranged
in vector form x such that its ia-th element corresponds to xia. We impose the constraint that a
single box can be selected per frame: ∑a xia = 1. Thus, vector x represents a discrete solution
that indicates which box is selected. Similarly, we keep the continuous location parameters
in a global vector θ , with θia being the parameters of box Bia. We simultaneously optimize
for both x and θ . Our mathematical formulation (Eq. 2), considers the joint problem of
bounding box selection and location refinement. It is a discrete-continuous optimization
problem with second-order terms for matching multiple frames and higher order terms for
refining the bounding boxes. These potentials are defined below:

Pairwise Potential: we include both second order relations between boxes and unary
features per box into the pairwise potentials. The unary cues capture how likely is a given
box to represent the foreground object given its properties (e.g. appearance, speed) vs. its
surrounding background. We estimate the average speed of a given region with an efficient
state-of-the-art dense flow method [32]. At the second-order level, we consider spatiotem-
poral and appearance consistency cues: how well boxes from different frames match in ap-
pearance (using Euclidean distances between their HOG descriptors [8]) and geometry (e.g.
area, aspect ratio, overlap and location). We form a matrix M, whose elements Mia; jb use
these cues and estimate how well box a from frame i matches box b from frame j, and also
how likely they are to represent foreground objects. These terms have the following form:

Mia; jb = exp(wTgia; jb), (1)

where gia; jb = [( fia + f jb),(via + v jb),(cia + c jb),mia; jb,oia; jb,dia; jb,sia; jb,ria; jb], such that:
1) fia (and f jb respectively) measure the absolute difference between the average foreground
soft-segmentation values in box a (and b respectively) vs. average foreground values in
the surrounding background from its frame i (and j respectively). 2) Similarly, via and
v jb measure the absolute difference in the relative mean speed between the box and the
surrounding background, computed using the DeepFlow method [32]. 3) cia and c jb measure
the distance between the box center and the image center. 4) mia; jb reflects the quality of the
match between the standard HOG descriptor of box a and that of box b. 5) oia; jb measures the
overlap-over-union between the boxes. 6) dia; jb is the distance between the boxes’ centers.
7) sia; jb is the ratio of the difference between the boxes’ areas to the maximum of the two
areas. 8) ria; jb estimates the change in shape, as difference between the boxes’ aspect ratios.

We learn w such that exp(wTgia; jb) approximates a target t = 1 if the matched pair is
correct and is equal to a small positive value (t = 0.1) otherwise. We want exp(wTgia; jb)≈ t.
We take the log on both sides wTgia; jb ≈ log t and obtain a linear system of equations over
a set of training samples. We estimate the parameters using ridge regression (least squares
minimization with L2-norm regularization). Since the number of parameters is relatively
small (= 8) overfitting is unlikely, thus we use a small sample of 100 positively matched box
pairs (manually selected) and 300 randomly selected pairs for the negative class.

Higher-order Potential: in order to improve the location of the initial bounding boxes
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(which might not be optimally selected by Edge Boxes) we use higher order terms, one for
each frame, that model foreground-background appearance over the multiple frames con-
nected to it. We estimate foreground and background color probability distributions from
the 2k+ 1 bounding boxes and their frames in the neighborhood of the current frame i (in-
cluding itself) and estimate the foreground segmentation using the SoftSeg method. Then,
the higher order term Hi(x,θ) = λck(i) measures the difference between average foreground
segmentation values inside the box defined by (x,θ) and outside of it using the estimated
color distribution from 2k+1 multiple frames. The higher order terms estimate a more con-
sistent segmentation by computing foreground-background models from the current solution
(x,θ) over multiple frames connected to frame i. Note that Hi(x,θ) is sensitive only to the
elements in θ that belong to the matched bounding boxes - an important aspect for efficient
optimization.

Optimization Problem: the problem becomes one of joint box matching and location
refinement over multiple frames, in which we optimize over both x and θ :

(x∗,θ ∗) = argmax
x,θ

(xT Mx+
n

∑
i=1

Hi(x,θ))

s.t. ∑
a

xia = 1 ∀i, x ∈ {0,1}n.

Ideally the two terms, the quadratic discrete matching term xT Mx and the continuous func-
tion ∑

n
i=1 Hi(x,θ) should be optimized simultaneously, but that is computationally prohibitive.

We adopt a two stage approach, as briefly presented previously. The first stage performs
discrete optimization in which the quadratic function is optimized by finding the correct
frame-to-box matches, given a fixed θ - the initial bounding box locations. In the second
stage, when x∗ is fixed, the location θ is refined by the non-parametric Mean-Shift in order
to locally optimize the foreground pixels density.

4 Algorithm

The structure of our method is presented in Algorithm 1. After finding the initial candidate
bounding boxes we match them across frames using IPFP [19] (Algorithm 2), an efficient
algorithm for graph matching and MAP inference. Step 1 of IPFP can be optimally solved
in linear time by picking, for each site i the label a∗ that maximizes (xt

>M)ia over all boxes
a belonging to frame i. Step 2 can also be solved efficiently with closed-form solution, as
the line search becomes an optimization of a quadratic function in one dimension. Starting
from a uniform solution, IPFP converges in 5− 10 iterations and quickly selects bounding
boxes of state-of-the-art quality on several classes. After the final boxes are selected we
proceed to optimize the continuous θ ∗. We improve the location of the bounding boxes to
maximize the higher order appearance/co-segmentation terms, using Algorithm 3 (Stage 3
of our approach). In practice Stage 3 improves over Stage 2 by a significant margin. (Table
2). The pseudo-codes of our methods are presented in Algorithms 1, 2, 3.
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Algorithm 1 Multiple Frames Matching for Object Discovery
Input: video sequence V = {I1, I2, ..., In}.
Stage 1:

create pool of candidate bounding boxes B (Edge Boxes with VideoPCA).
initialize potentials M and Hi over the entire video sequence.
set initial xia← 1/ni, ∀ (i,a).

Stage 2:
x∗← argmaxx xT Mx (Alg. 2).

Stage 3:
find θ ∗ia for each selected box a in each frame i that optimizes Hi(θ ,x∗) (Alg. 3).
compute soft-segmentation masks (Alg. 3).

return x∗,θ ∗ and soft-segmentation masks.

Algorithm 2 Multiple Frames Matching with IPFP
Initialize x0, t← 0.
repeat

Step 1: y∗← argmaxx>t My s.t. ∑a yia = 1, y ∈ {0,1}n.
if x>t M(y−xt) = 0 stop.

Step 2: α∗← argmaxS((1−α)xt +αy∗), α ∈ [0,1].
Step 3: xt+1← (1−α∗)xt +α∗y∗, t← t +1 .

until convergence.
x∗← xt .
return x∗.

4.1 Background Subtraction by VideoPCA

We present our novel method based on Principal Component Analysis for rapidly estimating
the frame pixels that are more likely to belong to the foreground object 1. We make the ob-
servations that usually the object of interest has more complex and varied movements than
its background scene, it often causes occlusions, it has a distinctive appearance, it usually
occupies less space. All these differences make the foreground more difficult to model with
a simple PCA-based scheme, than the background. Since the background contains the bulk
of the information in the video and varies less than the foreground, we expect that it is better
captured by the lower dimensional subspace of the frames from a given video shot. Sev-
eral competitive methods for detecting potentially interesting, foreground objects as salient
regions in images are also based on the general idea that objects are different from their
backgrounds and that this foreground-background contrast can be best estimated by comput-
ing global image statistics over the input test image or by learning a background prior [2, 3].
For example, the successful spectral residual approach [10] is an efficient method that finds
interesting regions in an image by looking at the difference between the average Fourier spec-
trum of the image, estimated using filtering, and the actual raw spectrum. The more recent
discriminative regional feature integration approach (DRFI) [11], learns a background prior
and finds objects that distinguish themselves from the global background using regression.

Different from the current literature, our method takes advantage of the spatiotemporal
consistency that naturally exists in video shots and learns, in an unsupervised manner using
PCA, a linear subspace of the background. It takes advantage of the redundancy and also of

1Code available at: https://sites.google.com/site/multipleframesmatching/
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Figure 2: First row: original images. Second row: reconstructed images with PCA and
the first 8 principal components chosen. Third row: error image between the original and
the reconstructed. Fourth row: final foreground segmentation computed with the SoftSeg
method using color models obtained from foreground regions estimated with VideoPCA.

Algorithm 3 Box Location Refinement over Multiple Frames
for i = 1, . . . ,n do

Step 1: from x∗ and the frames connected to frame i estimate a color model (Sec. 4.2).
Step 2: compute the foreground segmentation of frame i using the color model from 1.
Step 3: improve the location θia of the current box a in frame i using Mean-Shift on the

estimated foreground segmentation, until convergence.
end for

the rich information available in the whole video sequence. Relative to the main subspace of
variation, the object is expected to be an outlier, an element of noise, harder to reconstruct.
Note that every single change in appearance from one frame to the next, and every rapid
movement, would be hard to capture by blindly using PCA on whole frames. We used this
intuition to find pixels belonging to potential foreground objects and their occlusion regions,
by a method related to background subtraction. In our case the background is, in fact, the im-
age reconstructed in the reduced subspace. Let the principal components be ui, i ∈ [0 . . .nu]
(we used nu = 8) and the reconstructed frame f be fr ≈ f0+∑

nu
i=1((f− f0)

>ui)ui. We obtained
the error image fdi f f = |f− fr|. We notice that the difference image enhances the pixels be-
longing to the foreground object or to occlusions caused by the movement of this object
(Fig. 2). By smoothing these regions with a large enough Gaussian and then thresholding,
we obtain masks whose pixels tend to belong to objects rather than to background. Then, by
applying another large and centered Gaussian to the obtained masks, we get a refined mask
that is more likely to belong to the object of interest. Next, by accumulating such masks
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Table 1: Comparison to recent state-of-the-art methods on Youtube-Objects Dataset. Note
that we obtain state-of-the-art results on four classes by a significant margin of at least 12%
on each, while being on others close to or better than [23].

Method aeroplane bird boat car cat cow dog horse motorbike train Average

Our method 38.3 62.5 51.1 54.9 64.3 52.9 44.3 43.8 41.9 45.8 49.9
[25] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5
[23] 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1
[14] 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.0 25.0 31.0
[26] 57.5 39.8 29.4 52.0 17.3 45.1 38.4 22.9 10.5 14.6 32.8

over the entire video shot we can construct a relatively stable, robust foreground-background
color model in order to estimate a soft segmentation, using the SoftSeg method presented
next. While the mask is not optimal, it is computed at a high speed (50− 100 fps), and, in
our extensive experiments, it was always useful at obtaining high quality candidate bounding
boxes and initial foreground soft-segmentations (see Fig. 2 and Table 2).

4.2 Soft-Segmentation
Foreground-background segmentation should separate well the object of interest from the
background, based on statistical differences between the object and its surroundings. Here
we present a simple and effective way (termed SoftSeg) of producing soft object masks by
capturing global object and background color properties, related to the method for soft fore-
ground segmentation in static images presented in [17]. For both the object, represented
as a bounding box, and the background, considered as a border surrounding the bound-
ing box (of thickness half the size of the bounding box), we estimate the empirical color
distributions, such that for a given color c the foreground color likelihood is estimated as
p(c|F) = N(F)

c /N(F), where N(F)
c is the number of times the color c appeared inside the fore-

ground region and N(F) is the total number of foreground pixels. Similarly, we compute the
background color likelihood p(c|B). Given the two distributions we estimate the probability
of foreground for each pixel of color c in the image, using Bayes rule with equal priors:
p(F |c) = p(c|F)/(p(c|F)+ p(c|B)). In order to obtain the soft foreground segmentation
mask, we simply estimate the foreground probability for each pixel with the above formula.
In the case of multiple frames, when estimating the higher order terms Hi(x,θ) these two
distributions are computed from pixels accumulated from all frames considered. Segmenta-
tions obtained with probabilities estimated from multiple frames are of higher quality, less
prone to accidental box misalignments and other noises.

5 Experiments
We run experiments on the large-scale YouTube-Objects video dataset [25], which contains
challenging sequences of ten object categories (aeroplane, bird, boat, car, cat, cow, dog,
horse, motorbike, train) filmed in the wild. The dataset has 5484 video shots for a total of
571089 frames. The videos display significant clutter, with foreground objects coming in
and out of focus and often out of sight, undergoing occlusions and significant changes in
scale and viewpoint. We present final comparative results in Table 1. The numbers show
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Figure 3: Top: example results using our method. In blue we show the candidate bounding
boxes that survive the first filtering stage. In magenta we show the boxes matched, before
location refinement. The final boxes are in yellow and the green boxes are the ground truth.
We also present the final soft-segmentations, after the final boxes are produced. Bottom:
some interesting failure cases, showing how ambiguous the problem of main object discovery
could be. Also note the high quality of our soft foreground segmentations.

the percentage of correct bounding boxes found, per class, where a detection is considered
successful if the agreement with the ground-truth box, measured as overlap over union, is
greater than 0.5.

We also present bounding box accuracies after each stage of our approach, demonstrating
how each phase improves the quality of detection (Table 2). The last two rows show, in
percentages, how many times the center of mass of the soft-segmentation mask hits inside
the ground truth bounding box (denoted as hit ratio). We evaluated the soft-segmentation
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Table 2: Average results per class after each stage. Stage 1 selects a random candidate.
Note how Stage 3 using Mean-Shift refinement, improves over Stage 2 by 3.6%. Last two
rows: evaluation of soft-segmentation modules, presenting the frequency with which the
mass center of the segmentation mask hits inside the ground truth object box.

Evaluation after different stages aeroplane bird boat car cat cow dog horse motorbike train Average

After stage 1 17.2 39.7 22.5 32.4 35.7 28.6 22.8 20.3 37.1 20.8 27.7
After stage 2 37.2 60.2 50.5 49.3 60.2 48.6 36.7 40.6 38.7 41.7 46.4
After stage 3 38.3 62.5 51.1 54.9 64.3 52.9 44.3 43.8 41.9 45.8 49.9

Soft-segmentation evaluation aeroplane bird boat car cat cow dog horse motorbike train Average

Final segmentation hit ratio 76.5 82.9 72.6 76.1 86.3 72.9 74.7 70.3 52.4 70.8 73.6
SegVideoPCA hit ratio 90.4 77.5 84.0 69.2 79.8 71.2 73.3 62.9 58.1 68.1 73.5

produced by VideoPCA by itself, as well as the final soft-segmentation, after Stage 3. Note
that VideoPCA alone matches the accuracy of the final segmentation module. The high
numbers indicate that the foreground masks are, in general, well centered on the object. As
the ground truth mask is not available, a more accurate evaluation of these masks was not
possible. See qualitative results in Figures 3 and 2.

Computation time: on a 2.2 GHz Laptop PC using unoptimized Matlab code, the average
times per frame, per different modules, are: Fast DeepFlow: 1.3 sec; VideoPCA: 0.01−0.02
sec; Bounding box proposals and filtering: 2 sec; Creating the potentials: 3 sec per shot;
Matching with IPFP: 0.007 sec per shot; Stage 3: 1 sec; Total time of the whole method
from beginning to end, per frame: 6.9 sec.

6 Conclusions

We have presented an efficient method for automatic discovery of foreground objects in
video sequences with state-of-the-art performance on several classes from the large scale
YouTube-Objects dataset. Different from most current methods, ours is able to efficiently
discover object bounding boxes and their soft-segmentation masks by considering fore-
ground/background separation cues along with appearance and geometric matching consis-
tency over multiple frames in the sequence. Additionally, we propose an efficient procedure
with realtime performance for locating foreground regions in video based on Principal Com-
ponent Analysis, which helps significantly in producing high quality bounding boxes. Our
approach, by proposing efficient bounding box generation, location refinement and object
soft-segmentation, covers and extends current approaches in object discovery in video. For
future work we plan to extend our method to the case of multiple objects discovery. We will
also continue to develop our VideoPCA algorithm and evaluate it independently on several
datasets, as a stand-alone saliency detection method.

Acknowledgements: Marius Leordeanu was supported by CNCS-UEFICSDI, under project
PNII PCE-2012-4-0581.
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